Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
J Am Chem Soc ; 146(17): 12206-12214, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38637324

RESUMO

Chiral nanographenes (NGs) have garnered significant interest as optoelectronic materials in recent years. While helically chiral NGs have been extensively studied, axially chiral NGs have only witnessed limited examples, with no prior reports of axially chiral nonbenzenoid NGs. Herein we report an axially chiral nonbenzenoid nanographene featuring six pentagons and four heptagons. This compound, denoted as 2, was efficiently synthesized via an efficient Pd-catalyzed aryl silane homocoupling reaction. The presence of two bulky 3,5-di-tert-butylphenyl groups around the axis connecting the two nonbenzenoid PAH (AHR) segments endows 2 with atropisomeric chirality and high racemization energy barrier, effectively preventing racemization of both R- and S-enantiomers at room temperature. Optically pure R-2 and S-2 were obtained by chiral HPLC separation, and they exhibit circular dichroism (CD) activity at wavelengths up to 660 nm, one of the longest wavelengths with CD responses reported for the chiral NGs. Interestingly, racemic 2 forms a homoconfiguration π-dimer in the crystal lattice, belonging to the I222 chiral space group. Consequently, this unique structure renders crystals of 2 with a second harmonic generation (SHG) response, distinguishing it from all the reported axially chiral benzenoid NGs. Moreover, R-2 and S-2 also exhibit SHG-CD properties.

2.
J Thorac Dis ; 16(2): 1171-1179, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38505028

RESUMO

Background: The diagnosis, treatment, and prognosis of early postoperative constrictive pericarditis (EPCP) have not been discussed in depth. The objective of this study was to devise and propose a management strategy for EPCP. Methods: In this study, constrictive pericarditis (CP) within 6 months after cardiac surgery was defined as EPCP, and patients were divided into two groups based on intraoperative findings: a parietal thickening group and a visceral thickening group. Results: A total of 20 patients were included in this study, and the incidence rate of recurrent pericardiectomy was 0.32% among all patients undergoing cardiovascular surgery. EPCP after valve surgery occurred in 85.0% of patients. Pleural effusion was the most common preoperative symptom, occurring in 90% of patients. Pericardial thickening occurred in the visceral layer in seven cases and in the parietal layer in 13 cases. There were no differences in comorbidities, C-reactive protein (CRP) level, or erythrocyte sedimentation rate (ESR) between the two groups. Most patients with visceral thickening (83.3%) needed cardiopulmonary bypass (CPB) assistance during surgery and had a longer hospital stay than those with parietal thickening (52.8±21.8 vs. 34.9±13.8 days, P=0.049). Central venous pressure (CVP) was decreased in all patients after pericardiectomy (24.9±6.96 vs. 8.9±2.92 cmH2O, P<0.001), and the cardiac function improved significantly in patients with parietal thickening [New York Heart Association (NYHA) grade ≥ III accounted for 28.6% of patients]. The long-term survival rate of patients with parietal thickening was 92.3% and that of patients with visceral thickening was 57.1%, and there was no significant difference between them (P=0.056). Conclusions: Recurrent episodes of chest tightness, pleural effusion, and elevated CVP within 6 months after cardiac surgery should be considered highly suggestive of EPCP. There are few points of difference between pericarditis with thickening of the parietal and visceral layers. After failure of conservative medical treatment, pericardiectomy results in significant improvements in cardiac function and quality of life, especially in patients with thickening of the parietal layer.

3.
Adv Mater ; : e2309256, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38479377

RESUMO

Polymer semiconductors hold tremendous potential for applications in flexible devices, which is however hindered by the fact that they are usually processed by halogenated solvents rather than environmentally more friendly solvents. An effective strategy to boost the solubility of high-performance polymer semiconductors in nonhalogenated solvents such as tetrahydrofuran (THF) by appending hydroxyl groups in the side chains is herein presented. The results show that hydroxyl groups, which can be easily incorporated into the side chains, can significantly improve the solubility of typical p- and n-types as well as ambipolar polymer semiconductors in THF. Meanwhile, the thin films of these polymer semiconductors from the respective THF solutions show high charge mobilities. With THF as the processing and developing solvents these polymer semiconductors with hydroxyl groups in the side chains can be well photopatterned in the presence of the photo-crosslinker, and the charge mobilities of the patterned thin films are mostly maintained by comparing with those of the respective pristine thin films. Notably, THF is successfully utilized as the processing and developing solvent to achieve high-density photopatterning with ≈82 000 device arrays cm-2 for polymer semiconductors in which hydroxyl groups are appended in the side chains.

4.
BMC Cardiovasc Disord ; 24(1): 128, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418967

RESUMO

OBJECTIVE: Calcific aortic valve disease (CAVD) is the leading cause of angina, heart failure, and death from aortic stenosis. However, the molecular mechanisms of its progression, especially the complex disease-related transcriptional regulatory mechanisms, remain to be further elucidated. METHODS: This study used porcine valvular interstitial cells (PVIC) as a model. We used osteogenic induced medium (OIM) to induce calcium deposition in PVICs to calcify them, followed by basic fibroblast growth factor (bFGF) treatment to inhibit calcium deposition. Transcriptome sequencing was used to study the mRNA expression profile of PVICs and its related transcriptional regulation. We used DaPars to further examine alternative polyadenylation (APA) between different treatment groups. RESULTS: We successfully induced calcium deposition of PVICs through OIM. Subsequently, mRNA-seq was used to identify differentially expressed mRNAs for three different treatments: control, OIM-induced and OIM-induced bFGF treatment. Global APA events were identified in the OIM and bFGF treatment groups by bioinformatics analysis. Finally, it was discovered and proven that catalase (CAT) is one of the potential targets of bFGF-induced APA regulation. CONCLUSION: We described a global APA change in a calcium deposition model related to CAVD. We revealed that transcriptional regulation of the CAT gene may contribute to bFGF-induced calcium deposition inhibition.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica/patologia , Calcinose , Suínos , Animais , Estenose da Valva Aórtica/metabolismo , Valva Aórtica/metabolismo , Cálcio/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/farmacologia , Poliadenilação , Células Cultivadas , Calcinose/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Acc Chem Res ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38295316

RESUMO

ConspectusIn recent decades, there has been rapid development in the field of polymer semiconductors, particularly those based on conjugated donor-acceptor (D-A) polymers exhibiting high charge mobilities. Furthermore, the application of polymer semiconductors has been successfully extended to a wide range of functional devices, including sensors, photodetectors, radio frequency identification (RFID) tags, electronic paper, skin electronics, and artificial synapses. Over the past few years, there has been a growing focus on stimuli-responsive polymer semiconductors, which have the potential to impart additional functionalities to conventional field-effect transistors, garnering increased attention within the research community. In this context, phototunable polymer semiconductors have received significant attention due to their ability to utilize light as an external stimulus, enabling remote control of device performance with high spatiotemporal resolution. Meanwhile, integration of field-effect transistors with polymer semiconductors can enable the realization of complex functions. To achieve this, precise and controllable patterning of polymer semiconductors becomes essential. In this Account, we discuss our research findings in the context of phototunable and photopatternable polymer semiconductors. These developments encompass the following key aspects: (i) polymer semiconductors, such as poly(diketopyrrolopyrrole-quaterthiophene) (PDPP4T), exhibit phototunability when blended with the photochromic compound hexaarylbiimidazole (HABI). The photo/thermal-responsive field-effect transistors (FETs) can be fabricated using blending thin films. Remarkably, these photo/thermal-responsive transistors can function as photonically programmable and thermally erasable nonvolatile memory devices. (ii) By incorporating photoswitchable groups like azo and spiropyran into the side chains of conjugated D-A polymers, we can create phototunable polymer semiconductors. The reversible isomerization of azo and spiropyran groups significantly influences the charge transport properties of these polymer semiconductors. Consequently, the performance of the resulting FETs can be reversibly tuned through UV/visible or near-infrared light (NIR) irradiation. Notably, the incorporation of two distinct azo groups into the side chains leads to polymer semiconductors with tristable semiconducting states, offering the ability to logically control device performance using light irradiation at three different wavelengths. (iii) Photopatterning of p-type, n-type, and ambipolar semiconductors featuring alkyl side chains can be achieved using a diazirine-based, four-armed photo-cross-linker (4CNN) with a loading concentration of no more than 3% (w/w). Furthermore, the semiconducting performances of FETs with patterned thin films were found to be satisfactorily uniform. Importantly, the cross-linked thin films are robust and show good resistance to organic solvents, which is useful for fabricating all-solution processable multilayer electronic devices. (iv) The introduction of azide groups into the side chains of conjugated polymers results in a single-component semiconducting photoresist. The presence of azide groups renders the side chains with photo-cross-linking ability, enabling the successful formation of uniform patterns, even as small as 5 µm, under UV light irradiation. Benefiting from the single component feature, field-effect transistors with individual patterned thin films display satisfactorily uniform performances. Moreover, this semiconducting photoresist has proven effective for efficiently photopatterning other polymer semiconductors, demonstrating its versatility.

6.
Adv Sci (Weinh) ; 11(8): e2305800, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38115748

RESUMO

In recent decades, polymer semiconductors, extensively employed as charge transport layers in devices like organic field-effect transistors (OFETs), have undergone thorough investigation due to their capacity for large-area solution processing, making them promising for mass production. Research efforts have been twofold: enhancing the charge mobilities of polymer semiconductors and augmenting their mechanical properties to meet the demands of flexible devices. Significant progress has been made in both realms, propelling the practical application of polymer semiconductors in flexible electronics. However, integrating excellent semiconducting and mechanical properties into a single polymer still remains a significant challenge. This review intends to introduce the design strategies and discuss the properties of high-charge mobility stretchable conjugated polymers. In addition, another key challenge faced in this cutting-edge field is maintaining stable semiconducting performance during long-term mechanical deformations. Therefore, this review also discusses the development of healable polymer semiconductors as a promising avenue to improve the lifetime of stretchable device. In conclusion, challenges and outline future research perspectives in this interdisciplinary field are highlighted.

7.
Front Oncol ; 13: 1196592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342193

RESUMO

Background: The rate of breast-conserving surgery is very low in China, compared with that in developed countries; most breast cancer patients receive mastectomy. It is great important to explore the possibility of omitting axillary lymph node dissection (ALND) in early-stage breast cancer patients with 1 or 2 positive sentinel lymph nodes (SLNs) in China. The aim of this study was to develop a nomogram based on elastography for the prediction of the risk of non-SLN (NSLN) metastasis in early-stage breast cancer patients with 1 or 2 positive SLNs. Methods: A total of 601 breast cancer patients were initially recruited. According to the inclusion and exclusion criteria, 118 early-stage breast cancer patients with 1 or 2 positive SLNs were finally enrolled and were assigned to the training cohort (n=82) and the validation cohort (n=36), respectively. In the training cohort, the independent predictors were screened by logistic regression analysis and then were used to conducted the nomogram for the prediction of NSLN metastasis in early-stage breast cancer patients with 1 or 2 positive SLNs. The calibration curves, concordance index (C-index), the area under the receiver operating characteristic (ROC) curve (AUC), and Decision curve analysis (DCA) were used to verified the performance of the nomogram. Results: The multivariable analysis showed that the enrolled patients with positive HER2 expression (OR=6.179, P=0.013), Ki67≥14% (OR=8.976, P=0.015), larger lesion size (OR=1.038, P=0.045), and higher Emean (OR=2.237, P=0.006) were observed to be the independent factors of NSLN metastasis. Based on the above four independent predictors, a nomogram was conducted to predict the risk of the NSLN metastasis in early-stage breast cancer patients with 1 or 2 positive SLNs. The nomogram showed good discrimination in the prediction of NSLN metastasis, with bias-corrected C-index of 0.855 (95% CI, 0.754-0.956) and 0.853 (95% CI, 0.724-0.983) in the training and validation cohorts, respectively. Furthermore, the AUC was 0.877 (95%CI: 0.776- 0.978) and 0.861 (95%CI: 0.732-0.991), respectively, indicating a good performance of the nomogram. The calibration curve suggested a satisfactory agreement between the predictive and actual risk in both the training (χ2 = 11.484, P=0.176, HL test) and validation (χ2 = 6.247, p = 0.620, HL test) cohorts, and the obvious clinical nets were revealed by DCA. Conclusions: We conducted a satisfactory nomogram model to evaluate the risk of NSLN metastasis in early-stage breast cancer patients with 1 or 2 SLN metastases. This model could be considered as an ancillary tool to help such patients to be selectively exempted from ALND.

8.
Angew Chem Int Ed Engl ; 62(39): e202304632, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37338996

RESUMO

Non-benzenoid polycyclic aromatic hydrocarbons (PAHs) have received a lot of attention because of their unique optical, electronic, and magnetic properties, but their synthesis remains challenging. Herein, we report a non-benzenoid isomer of peri-tetracene, diazulenorubicene (DAR), with two sets of 5/7/5 membered rings synthesized by a (3+2) annulation reaction. Compared with the precursor containing only 5/7 membered rings, the newly formed five membered rings switch the aromaticity of the original heptagon/pentagon from antiaromatic/aromatic to non-aromatic/antiaromatic respectively, modify the intermolecular packing modes, and lower the LUMO levels. Notably, compound 2 b (DAR-TMS) shows p-type semiconducting properties with a hole mobility up to 1.27 cm2  V-1 s-1 . Moreover, further extension to larger non-benzenoid PAHs with 19 rings was achieved through on-surface chemistry from the DAR derivative with one alkynyl group.

9.
J Cardiothorac Surg ; 18(1): 154, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069699

RESUMO

OBJECTIVE: To evaluate the effect of preoperative pulmonary artery pressure on perioperative outcome of end-stage heart failure patients undergoing heart transplantation. METHODS: Retrospective analysis was undertaken on the clinical data of patients receiving heart transplantation in the Department of Cardiovascular Surgery of our hospital from March 2017 to March 2022. A ROC curve analysis was developed between mean pulmonary artery pressure (mPAP) and postoperative mortality using mPAP as diagnostic criteria. Patients were divided into groups based on this threshold to determine the best mPAP threshold value for predicting postoperative nosocomial mortality, and the differences in preoperative and intraoperative data, postoperative complications, and clinical prognosis of patients in the two groups were compared. Patients were followed up to draw the survival curve of patients in the two groups. RESULTS: The study enlisted the participation of 105 patients. ROC curve research revealed that preoperative pulmonary artery pressure was substantially linked with death following heart transplantation, with mPAP = 30.5mmHg being the best threshold. The group with mPAP ≥ 30.5mmHg had a greater incidence of postoperative ECMO support (28.2% vs. 10.6%, P = 0.021) and a higher incidence of in-hospital mortality (15.4% vs. 1.5%, P = 0.019) than the group with mPAP < 30.5mmHg. The postoperative survival rates of 105 patients were 91.3%, 88.7%, 81.6%, and 77.5% at 1, 2, 3, and 4 years, respectively, however, there was no significant difference between the two groups of patients in the postoperative intermediate-far survival rate (P = 0.431). CONCLUSIONS: Preoperative pulmonary artery pressure in patients with end-stage heart failure is intimately correlated with perioperative prognosis of heart transplant recipients. The optimal cut-off mPAP value in predicting perioperative prognosis of heart transplant recipients is 30.5mmHg. In the high mPAP group, perioperative ECMO support rate and perioperative mortality rate are high, which do not affect the medium and long-term prognosis of the recipients undergoing heart transplantation.


Assuntos
Insuficiência Cardíaca , Transplante de Coração , Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/complicações , Estudos Retrospectivos , Artéria Pulmonar , Prognóstico , Insuficiência Cardíaca/cirurgia , Insuficiência Cardíaca/complicações
10.
Angew Chem Int Ed Engl ; 62(17): e202300990, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36861376

RESUMO

Non-benzenoid acenes containing heptagons have received increasing attention. We herein report a heptacene analogue containing a quinoidal benzodi[7]annulene core. Derivatives of this new non-benzenoid acene were obtained through an efficient synthetic strategy involving an Aldol condensation and a Diels-Alder reaction as key steps. The configuration of this heptacene analogue can be modulated from a wavy to a curved one by just varying the substituents from a (triisopropylsilyl)ethynyl group to a 2,4,6-triisopropylphenyl (Trip) group. When mesityl (Mes) groups are linked to the heptagons, the resulting non-benzenoid acene displays polymorphism with a tunable configuration from a curved to a wavy one upon varying the crystallization conditions. In addition, this new non-benzenoid acene can be oxidized or reduced by NOSbF6 or KC8 to the respective radical cation or radical anion. Compared with the neutral acene, the radical anion shows a wavy configuration and the central hexagon becomes aromatic.

11.
Adv Sci (Weinh) ; 10(15): e2300530, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36967566

RESUMO

Emissive organic semiconductors are highly demanding for organic light-emitting transistors (OLETs) and electrically pumped organic lasers (EPOLs). However, it remains a great challenge to obtain organic semiconductors with high carrier mobility and high photoluminescence quantum yield simultaneously. Here, a new design strategy is reported for highly emissive ambipolar and even n-type semiconductors by introducing perfluorophenyl groups into polycyclic aromatic hydrocarbons such as perylene and anthracene. The results reveal that 3,9-diperfluorophenyl perylene (5FDPP) exhibits the ambipolar semiconducting property with hole and electron mobilities up to 0.12 and 1.89 cm2 V-1 s-1 , and a photoluminescence quantum yield of 55%. One of the crystal forms of 5FDPA exhibits blue emission with an emission quantum yield of 52% and simultaneously shows the n-type semiconducting property with an electron mobility up to 2.65 cm2 V-1 s-1 , which is the highest value among the reported organic emissive n-type semiconductors. Furthermore, crystals of 5FDPP are utilized to fabricate OLETs by using Ag as source-drain electrodes. The electroluminescence is detected in the transporting channels with an external quantum efficiency (EQE) of up to 2.2%, and the current density is up to 145 kA cm-2 , which are among the highest values for single-component OLETs with symmetric electrodes.

12.
Chemistry ; 29(30): e202300539, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-36944075

RESUMO

Molecular probes which can be modulated, functionalized and used to visualize the processes are highly desirable for understanding and manipulating biological systems. Geometric cis and trans isomers of tetraphenylethene (TPE) emerge as attractive candidates to fulfill these tasks thanks to the unique aggregation-induced emission properties, tailorable structures, and responsiveness to external stimuli. This minireview focuses on cis and trans isomers of TPE derivatives that are functionalized with molecular recognition units for fluorescence detection, bioimaging and cancer therapy. The effects of molecular geometry on fluorescence property, target binding ability and biological activity are summarized. The feasibility to in vitro and in vivo switch molecular configuration and thus bio-activity is discussed. Finally, the future development and challenges are discussed in view of TPE-based stereoisomers for targeted sensing and imaging-guided modulation of biological processes.


Assuntos
Corantes Fluorescentes , Espectrometria de Fluorescência/métodos , Isomerismo , Corantes Fluorescentes/química
13.
Adv Mater ; 35(17): e2209896, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36772843

RESUMO

Intrinsically stretchable polymer semiconductors are highly demanding for flexible electronics. However, it still remains challenging to achieve synergy between intrinsic stretchability and charge transport property properly for polymer semiconductors. In this paper, terpolymers are reported as intrinsically stretchable polymeric semiconductors with good ductility and high charge mobility simultaneously by incorporation of non-centrosymmetric spiro[cycloalkane-1,9'-fluorene] (spiro-fluorene) units into the backbone of diketopyrrolopyrrole (DPP) based conjugated polymers. The results reveal that these terpolymers show obviously high crack onset strains and their tensile moduli are remarkably reduced, by comparing with the parent DPP-based conjugated polymer without spiro-fluorene units. They exhibit simultaneously high charge mobilities (>1.0 cm2 V-1 s-1 ) at 100% strain and even after repeated stretching and releasing cycles for 500 times under 50% strain. The terpolymer P2, in which cyclopropane is linked to the spiro-fluorene unit, is among the best reported intrinsically stretchable polymer semiconductors with record mobility up to 3.1 cm2 V-1 s-1 at even 150% strain and 1.4 cm2 V-1 s-1 after repeated stretching and releasing cycles for 1000 times.

14.
Entropy (Basel) ; 25(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36673310

RESUMO

Multimodal image fusion aims to retain valid information from different modalities, remove redundant information to highlight critical targets, and maintain rich texture details in the fused image. However, current image fusion networks only use simple convolutional layers to extract features, ignoring global dependencies and channel contexts. This paper proposes GRPAFusion, a multimodal image fusion framework based on gradient residual and pyramid attention. The framework uses multiscale gradient residual blocks to extract multiscale structural features and multigranularity detail features from the source image. The depth features from different modalities were adaptively corrected for inter-channel responses using a pyramid split attention module to generate high-quality fused images. Experimental results on public datasets indicated that GRPAFusion outperforms the current fusion methods in subjective and objective evaluations.

15.
Circ Res ; 132(3): 306-319, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36562299

RESUMO

BACKGROUND: NDRG-1 (N-myc downstream-regulated gene 1) is a member of NDRG family that plays essential roles in cell differentiation, proliferation, and stress responses. Although the expression of NDRG1 is regulated by fluid shear stress, its roles in vascular biology remain poorly understood. The purpose of the study is to determine the functional significance of NDRG1 in vascular inflammation and remodeling. METHODS AND RESULTS: By using quantitative polymerase chain reaction, western blot, and immunohistochemistry, we demonstrate that the expression of NDRG1 is markedly increased in cytokine-stimulated endothelial cells and in human and mouse atherosclerotic lesions. To determine the role of NDRG1 in endothelial activation, we performed loss-of-function studies using NDRG1 short hairpin RNA. Our results demonstrate that NDRG1 knockdown by lentivirus bearing NDRG1 short hairpin RNA substantially attenuates both IL-1ß (interleukin-1ß) and TNF-α (tumor necrosis factor-α)-induced expression of cytokines/chemokines and adhesion molecules. Intriguingly, inhibition of NDRG1 also significantly attenuates the expression of procoagulant molecules, such as PAI-1 (plasminogen activator inhibitor type 1) and TF (tissue factor), and increases the expression of TM (thrombomodulin) and t-PA (tissue-type plasminogen activator), thus exerting potent antithrombotic effects in endothelial cells. Mechanistically, we showed that NDRG1 interacts with orphan Nur77 (nuclear receptor) and functionally inhibits the transcriptional activity of Nur77 and NF-κB (nuclear factor Kappa B) in endothelial cells. Moreover, in NDRG1 knockdown cells, both cytokine-induced mitogen-activated protein kinase activation, c-Jun phosphorylation, and AP-1 (activator protein 1) transcriptional activity are substantially inhibited. Neointima and atherosclerosis formation induced by carotid artery ligation and arterial thrombosis were markedly attenuated in endothelial cell-specific NDRG1 knockout mice compared with their wild-type littermates. CONCLUSIONS: Our results for the first time identify NDRG1 as a critical mediator implicated in regulating endothelial inflammation, thrombotic responses, and vascular remodeling, and suggest that inhibition of NDRG1 may represent a novel therapeutic strategy for inflammatory vascular diseases, such as atherothrombosis and restenosis.


Assuntos
Células Endoteliais , Trombose , Humanos , Animais , Camundongos , Células Endoteliais/metabolismo , Remodelação Vascular , NF-kappa B/metabolismo , Citocinas/metabolismo , Inflamação/genética , Inflamação/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Trombose/metabolismo , RNA Interferente Pequeno/metabolismo
16.
Mol Med ; 28(1): 158, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536281

RESUMO

BACKGROUND: Acute thoracic aortic dissection (ATAD) is a fatal condition characterized by tear of intima, formation of false lumen and rupture of aorta. However, the subpopulations of normal and dissected aorta remain less studied. METHODS: Single-cell RNA sequencing was performed including 5 patients with ATAD and 4 healthy controls. Immunohistochemistry and immunofluorescence were used to verify the findings. RESULTS: We got 8 cell types from human ascending aorta and identified 50 subpopulations including vascular smooth muscle cells (VSMCs), endothelial cells, fibroblasts, neutrophils, monocytes and macrophages. Six transmembrane epithelial antigen of prostate 4 metalloreductase (STEAP4) was identified as a new marker of synthetic VSMCs. CytoTRACE identified subpopulations with higher differentiation potential in specified cell types including synthetic VSMCs, enolase 1+ fibroblasts and myeloid-derived neutrophils. Synthetic VSMCs-derived C-X-C motif chemokine ligand 12 (CXCL12) might interact with neutrophils and fibroblasts via C-X-C motif chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3), respectively, which might recruit neutrophils and induce transdifferentitation of fibroblasts into synthetic VSMCs. CONCLUSION: We characterized signatures of different cell types in normal and dissected human ascending aorta and identified a new marker for isolation of synthetic VSMCs. Moreover, we proposed a potential mechanism that synthetic VSMCs might interact with neutrophils and fibroblasts via CXCL12-CXCR4/ACKR3 axis whereby deteriorating the progression of ATAD, which might provide new insights to better understand the development and progression of ATAD.


Assuntos
Aorta Torácica , Dissecção Aórtica , Masculino , Humanos , Células Endoteliais , Transcriptoma , Aorta , Fenótipo
17.
Heart Surg Forum ; 25(4): E616-E620, 2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36052920

RESUMO

BACKGROUND: After proximal aortic surgery, total arch replacement (TAR) may again be needed because of recurrent dissection or aneurysm. This paper analyzed the relevant data of this technology with hopes of improving cognition and treatment. METHODS: There were a total of 60 eligible cases of secondary TAR after proximal aortic surgery in our center from 2010 to 2020. The primary surgical procedures included aortic valve replacement (AVR), ascending aortic replacement, Bentall, hemi-arch replacement, and thoracic endovascular aortic repair (TEVAR). The data were analyzed using the IBM SPSS Statistics 23.0 for Windows™ and presented as the mean ± standard deviations and direct frequencies, as appropriate. RESULTS: The interval between two operations was 44.8±53.6 months, 24 cases (40%) underwent emergency operation, the recurrence of type A dissection included 51 cases, accounting for 85% of the causes of total arch re-replacement. In the second surgical procedures, the ascending + TAR + stented elephant trunk (SET) implantation accounted for 75.0%. The overall surgical success rate was 98.3%. Postoperative respiratory complications were the most common, including infection, pneumothorax and hemothorax in 21 cases (35.6%). The second most common complication was acute kidney injury (AKI) in six cases (10.2%), and neurological complications took place in three cases (5.1%). The 30-day mortality rate was 15.3% and the 1-, 3- and 5-year survival rates were 96.0%, 84.0%, and 76.0%, respectively. CONCLUSIONS: The recurrence of dissection is the main cause of TAR after proximal aortic surgery, followed by aneurysm and the resurgical criteria for aneurysm needs to be unified. In addition to TAR, SET also is widely used. Despite high early mortality, its long-term prognosis is acceptable.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Implante de Prótese Vascular , Procedimentos Endovasculares , Dissecção Aórtica/complicações , Dissecção Aórtica/diagnóstico , Dissecção Aórtica/cirurgia , Aorta/cirurgia , Aorta Torácica/cirurgia , Aneurisma da Aorta Torácica/complicações , Aneurisma da Aorta Torácica/diagnóstico , Aneurisma da Aorta Torácica/cirurgia , Implante de Prótese Vascular/métodos , Humanos , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Stents/efeitos adversos , Resultado do Tratamento
18.
Angew Chem Int Ed Engl ; 61(36): e202208378, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811386

RESUMO

We herein report a phosphoric-acid-substituted tetraphenylethene (T-P) capable of adapting its geometric configuration and biological activity to the microenvironment upon light irradiation for apoptosis modulation. Different from most ultraviolet-responsive isomerization, T-P undergoes cis-trans isomerization under visible light irradiation, which is biocompatible and thus photo-modulation is possible in living biosystems. By using alkaline phosphatase (ALP) and albumin as dual targets, T-P isomers display different protein binding selectivity, cancer-cell internalization efficiency and apoptosis-inducing ability. The proapoptotic activity was found to be kinetically controlled by the enzymatic reaction with ALP and regulated by co-existing albumin. Motivated by these findings, two-way modulation of proapoptotic effect and on-demand boosting anticancer efficacy were realized in vitro and in vivo using light and endogenous proteins as multiple non-invasive switching stimuli.


Assuntos
Neoplasias , Albuminas , Humanos , Isomerismo , Luz , Proteínas , Microambiente Tumoral
19.
Adv Sci (Weinh) ; 9(17): e2105667, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35434941

RESUMO

Herein, single-molecule conductance studies of TBT1-TBT6 which entails 1,4-dithienylbenzene as the backbone and SMe groups as the anchoring units, with the scanning tunneling microscope break junction (STM-BJ) technique, are reported. The molecular conductance of TBT1 with intramolecular O•••S noncovalent interactions is enhanced by about one order of magnitude in comparison to their analogue TBT2 (which contains alkyl instead of alkoxy chains). By replacing the methoxy groups in TBT1 with extending alkoxy chains in TBT3, TBT4, and TBT5, the molecular backbones become twisted and as a consequence the single-molecule conductance decreases gradually, showing that the intramolecular O•••S noncovalent interaction is influenced by the structural features of alkoxy chains. More importantly, the single-molecule conductance of TBT3, TBT4, and TBT5 can be boosted by increasing the electric field applied to the molecular junctions. Remarkably, the conductance of TBT3, TBT4, and TBT5 can be reversibly modulated due to the conformational changes between twisted and planar ones by varying the electric field. These results demonstrate that molecules with intramolecular O•••S noncovalent interactions have the potential for in situ control of the electrical properties of molecular-scale devices.

20.
Nat Commun ; 13(1): 1803, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379823

RESUMO

The interface between molecules and electrodes has great impact on charge transport of molecular devices. Precisely manipulating the structure and electronic coupling of electrode-molecule interface at a molecular level is very challenging. Here, we develop new molecular junctions based on tetrathiafulvalene (TTF)-fused naphthalene diimide (NDI) molecules which are anchored to gold electrodes through direct TTF-Au contacts formed via Au-S bonding. These contacts enable highly efficient orbital hybridization of gold electrodes and the conducting π-channels, yielding strong electrode-molecule coupling and remarkably high conductivity in the junctions. By further introducing additional thiohexyl (SHe) anchors to the TTF units, we develop molecular wires with multiple binding sites and demonstrate reversibly switchable electrode-molecule contacts and junction conductance through mechanical control. These findings show a superb electrode-molecule interface and provide a new strategy for precisely tunning the conductance of molecular devices towards new functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA